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Abstract. The standard form of the scalar-tensor theory gives eleven equations for eleven 
unknowns, the metric tensor gij and the scalar field $. Here we eliminate the scalar field to 
produce a theory that has just ten equations for ten unknown gij. The resulting expression 
for the action of fields and matter is contained completely in a sing!e expression. 

1. Introduction 

The scalar-tensor theory developed by Jordan (1955) and Brans and Dicke (1 96 1) can 
be derived from a variational principle with an action (Dicke 1964) 

d = ($’R +w$”$,i + vT)J(-g) d4x (1) i 
where w is an arbitrary coupling constant and Y a constant that normalises the masses. 
For matter only 

TJ(-g) = 1 S4(x - t ) m i  ds 

ds2 = gii dx’ dx’ 

i 

where 

with g,, the metric tensor and m, the particle masses. 
In this representation, g,, is the geodesic metric, that is, particles and light rays follow 

geodesics of the geometry; the field equations are not those of general relativity since 
they contain the scalar field $ which is determined by the geometry of the g,, and the 
energy-momentum tensor T,. The theory has eleven equations, given by varying the 
action (1) with respect to the ten g,,, and $, to determine the eleven variables g,, and (/I in 
terms of the distribution of the sources. 

In principle, we might expect to be able to eliminate q5 and reduce the theory to ten 
equations for ten g,,, and this is the problem considered in this paper. It is indeed 
possible to do this, not in terms of the geodesic space g,,, but in terms of a conformally 
related space g: = g,,/r$. 

2. Conformal representation 

While the above representation of the scalar-tensor theory is in terms of the geodesic 
metric gii, we can equally write the theory in terms of a conformally related metric. This 
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can be considered either as a re-scaling of units of time (and therefore length) or simply 
as an alternative mathematical representation of the theory. In this new metrjc, 
particles no longer follow geodesics of the geometry g ; ,  but their (non-geodesic) 
trajectories are still fully determined by the transformed equations. We do not 
transform the particle masses mi, the mass is considered here to be a pure number 
characterising the particle (e.g. a number times some standard mass such as the proton), 
a particle containing mi protons and electrons has the same number independent of the 
units for measuring space and time. We therefore consider the action (1) in the new 
metric g ;  where 

and under such a transformation we have (cf Synge 1960) 

The action (1) becomes 

where for convenience we have dropped the asterisk. Let us now take 4 = I,!I'/" so that 

04d( -g)  is a perfect differential and so makes no contribution to the field equations 
obtained by varying the action; if we now choose n such that 

6 f 6( 1 + w/6)lj2 
n2w - 12n - 6 =  0 n =  

w 
the action is just 

d = 1 (4"+'R + u4'' '9) . / ( -g)  d4x. 

3. Elimination of the scalar field 

Varying the above action with respect to 4 gives 

4(2n+1) /2  - U 2  

2(n + 1) R 

(9) 

and variation with respect to gij gives 

(12) 
4n+l(Rij-3gijR)-giio4n+l + g i k g i m ( 4 n + l ) ; k m  = u4 l / Z T i j  

Consequently the scalar field can be completely eliminated from the field equations in 
favour of ( 2 / R ) .  For a pure matter action 9 given by (2) is homogeneous of degree 1/2 
in gij, hence 

a 2  
( 1 3 )  g . , - = + 9 =  1 i i - 1  gijzT -2T 

I' agij 
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so 9 = T. The field equations are then 
(2n+2)/(2n+l)  (2n+2)/(2n+l)  

1 R ( g i k g i m  - g i i g * m ) [  (3 1 : k m  
R.. - - g .R = -2 v (n  + 1)- Ti, + ( F) 

'I 2 'I T 

4. The single action 

Since the variation of the action (10) gives 4 we may replace 4 inside the action by its 
value (1 1) so that, apart from numerical constants, 

where 

n = 6[ 1 f (1 + w / 6 ) " * ] / w .  (16) 

This procedure of replacing 4 inside the action is legitimate since the action (10) 
contains no derivatives of 4 and the field equations obtained by varying (15) are just 
(14), which in turn is just the scalar-tensor theory in a different (conformally related) 
geometry. We have therefore succeeded in eliminating the scalar field altogether and 
the action (15) is all that is needed to specify the theory, which now has ten equations for 
ten unknowns. Moreover the fact that the theory can be condensed into a single action 
is not discouraging for attempts to relate the scalar-tensor theory to Mach's principle. 

In the limit w +CO the one-body tests of the scalar-tensor theory are the same as in 
general relativity. However, as is clear from the action (15), the theory is not the same 
as general relativity. From equation (9) we have n + 0 as w G CO and the action (15) 
reduces to 

(17) 

This limit is interesting in its own right as an extension of general relativity, so 
further discussion is delayed for a subsequent publication (Roxburgh 1977). 
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